The catalytic role of uranyl in formation of polycatechol complexes
نویسندگان
چکیده
To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization.
منابع مشابه
Uranyle Complexes: synthesis, evaluation of biological activity
In this research, some of the inorganic complexes of uranyl with N- donor ligandswere synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR,¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center ofuranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds.The structure is linear (O=U=O, 180) and usually stable. So other ...
متن کاملSTUDY ON THE COMPLEX FORMATION BETWEEN N-PROPYLSALICYLIDENE BASED ON SILICA AS ION EXCHANGER AND SOME TRANSITION METAL IONS
N-propylsalicylidene based on silica as ion exchanger (IE) was used for the separation by complexation of Mn2+, Co2+, Ni2+, Cu2+, Hg2+, Cr3+, Fe3+, and UO22+ from their parent solutions. IE and its metal complexes are characterized by elemental analysis, electronic and infrared spectra, in addition to thermal analysis in atmospheric pressure. The mode of chelation and the proposed geometric str...
متن کاملThe effect of iodo substituents in bis(phenoxyimine) zirconium complexes on the catalytic performance of homogeneous ethylene polymerization reactions
Eight different zirconium phenoxyimine complexes were synthesized, characterized and tested as catalysts for ethylene polymerization. The phenoxyimine compounds were prepared by condensation of substituted salicylaldehydes with aliphatic and aromatic amines, the substituted salicylaldehydes from ortho substituted phenols and paraformaldehyde. The introduction of iodo substituents was achieved e...
متن کاملCatalytic one-electron reduction of uranyl(VI) to Group 1 uranyl(V) complexes via Al(III) coordination.
Reactions between the uranyl(VI) Pacman complex [(UO2)(py)(H2L)] of the Schiff-base polypyrrolic macrocycle L and Tebbe's reagent or DIBAL result in the first selective reductive functionalisation of the uranyl oxo by Al to form [(py)(R2AlOUO)(py)(H2L)] (R = Me or (i)Bu). The clean displacement of the oxo-coordinated Al(III) by Group 1 cations has enabled the development of a one-pot, DIBAL-cat...
متن کاملPreparation of Symmetrical Tetraphenyl Porphyrin Metal Complexes and Their Spectroscopic Studies
Porphyrins molecules are gaining importance in the present era. Porphyrins are important part of biological molecules like hemoglobin and chlorophyll .Photo system 1 and photo system 2 is important sunlight trap in chloroplast. Electron transport chain is a series of chemical reaction in which energy is formed in the form of ATP (Adenosine triphosphate).The members of electron transport chains ...
متن کامل